Security Scanner
Otuer 0 6€30IaCHOCTH

OTyeT no pe3ynbTaTaM CKaHUPOBaHUA 6€30MacHOCTH

MpoekT: TecToBbIA NPOEKT 2

URL: http://testphp.vulnweb.com

[ata ckaHupoBaHus: 26.04.2025 20:37

CBoaka pe3ynbTaToB

Bcero BbisiBneHo yassumocteit: 16

Kputunueckue Bbicokue CpeaHue Hu3skue UHdopmMaLnOHHbIe

2 2 11 1 0

MoapobHble pe3ynbTaTthbl

1. SQL Injection in searchFor

YpoBeHb cepbe3HocTu: Kputnueckui

Crartyc: ObHapyxeHa

OnucaHune

SQL injection vulnerability found using BET technique at URL http://testphp.vulnweb.com/search.php?test=query

PeweHune

Implement parameterized queries, input validation and apply the principle of least privilege

PekomeHpaauum

Verify the vulnerability manually and implement proper input validation

2. Content Security Policy (CSP) Header Not Set

YpoBeHb cepbe3HocTu: CpeaHun
Craryc: OGHapyxeHa
OnucaHue

Content Security Policy (CSP) is an added layer of security that helps to detect and mitigate certain types of attacks, including Cross Site Scripting (XSS)
and data injection attacks. These attacks are used for everything from data theft to site defacement or distribution of malware. CSP provides a set of
standard HTTP headers that allow website owners to declare approved sources of content that browsers should be allowed to load on that page —
covered types are JavaScript, CSS, HTML frames, fonts, images and embeddable objects such as Java applets, ActiveX, audio and video files.

PeweHune

Ensure that your web server, application server, load balancer, etc. is configured to set the Content-Security-Policy header.

PekomeHgauuu

CM. peLLEHME 1 CChINKK:

https://developer.mozilla.org/en-US/docs/Web/Security/ CSP/Introducing_Content_Security_Policy
https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://www.w3.0org/TR/CSP/

https://w3c.github.io/webappsec-csp/

https://web.dev/articles/csp

https://caniuse.com/#feat=contentsecuritypolicy

Crpanuna u3
[Jara coznanus: 26.04.2025



Security Scanner
Ot4er 0 6€30MaCHOCTH
https://content-security-policy.com/

3. Missing Anti-clickjacking Header

YpoBeHb cepbe3HOCTHU: Bbicokuii

Crartyc: ObHapyxeHa

OnucaHune

The response does not protect against 'ClickJacking' attacks. It should include either Content-Security-Policy with 'frame-ancestors' directive or X-Frame-
Options.

PeweHune

Modern Web browsers support the Content-Security-Policy and X-Frame-Options HTTP headers. Ensure one of them is set on all web pages returned by
your site/app.

If you expect the page to be framed only by pages on your server (e.g. it's part of a FRAMESET) then you'll want to use SAMEORIGIN, otherwise if you
never expect the page to be framed, you should use DENY. Alternatively consider implementing Content Security Policy's "frame-ancestors" directive.

PekomeHgauuu

Cwm. peLieHne 1 CCbifkn:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options

4. Absence of Anti-CSRF Tokens

YpoBeHb cepbe3HOCTU: Bbicokui

Crartyc: ObHapyxeHa

OnucaHune
No Anti-CSRF tokens were found in a HTML submission form.

A cross-site request forgery is an attack that involves forcing a victim to send an HTTP request to a target destination without their knowledge or intent in
order to perform an action as the victim. The underlying cause is application functionality using predictable URL/form actions in a repeatable way. The
nature of the attack is that CSRF exploits the trust that a web site has for a user. By contrast, cross-site scripting (XSS) exploits the trust that a user has
for a web site. Like XSS, CSRF attacks are not necessarily cross-site, but they can be. Cross-site request forgery is also known as CSRF, XSRF, one-
click attack, session riding, confused deputy, and sea surf.

CSREF attacks are effective in a number of situations, including:
* The victim has an active session on the target site.

* The victim is authenticated via HTTP auth on the target site.
* The victim is on the same local network as the target site.

CSRF has primarily been used to perform an action against a target site using the victim's privileges, but recent techniques have been discovered to
disclose information by gaining access to the response. The risk of information disclosure is dramatically increased when the target site is vulnerable to
XSS, because XSS can be used as a platform for CSRF, allowing the attack to operate within the bounds of the same-origin policy.

PeweHune

Phase: Architecture and Design

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

For example, use anti-CSRF packages such as the OWASP CSRFGuard.

Phase: Implementation

Ensure that your application is free of cross-site scripting issues, because most CSRF defenses can be bypassed using attacker-controlled script.
Phase: Architecture and Design

Generate a unique nonce for each form, place the nonce into the form, and verify the nonce upon receipt of the form. Be sure that the nonce is not
predictable (CWE-330).

Note that this can be bypassed using XSS.

Identify especially dangerous operations. When the user performs a dangerous operation, send a separate confirmation request to ensure that the user
intended to perform that operation.

Note that this can be bypassed using XSS.
Crpanuna u3
Jata coznmanus: 26.04.2025



Security Scanner
Ortuer 0 6€30I1aCHOCTH

Use the ESAPI Session Management control.

This control includes a component for CSRF.

Do not use the GET method for any request that triggers a state change.
Phase: Implementation

Check the HTTP Referer header to see if the request originated from an expected page. This could break legitimate functionality, because users or
proxies may have disabled sending the Referer for privacy reasons.

PekomeHgauuu

CM. peLLeHmne v CChINKu:
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

https://cwe.mitre.org/data/definitions/352.html

5. Insufficient Site Isolation Against Spectre Vulnerability

YpoBeHb cepbe3HocTU: CpeaHui
Cratyc: ObHapyxeHa
Onucanue

Cross-Origin-Resource-Policy header is an opt-in header designed to counter side-channels attacks like Spectre. Resource should be specifically set as
shareable amongst different origins.

PeweHune

Ensure that the application/web server sets the Cross-Origin-Resource-Policy header appropriately, and that it sets the Cross-Origin-Resource-Policy
header to 'same-origin' for all web pages.

'same-site' is considered as less secured and should be avoided.
If resources must be shared, set the header to 'cross-origin'.

If possible, ensure that the end user uses a standards-compliant and modern web browser that supports the Cross-Origin-Resource-Policy header
(https://caniuse.com/mdn-http_headers_cross-origin-resource-policy).

PekomeHgauum

Cwm. peLieHne 1 CCbIfkn:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cross-Origin_Resource_Policy

6. Permissions Policy Header Not Set

YpoBeHb cepbe3HocTu: CpeaHuii

Cratyc: ObHapyxeHa

OnucaHue

Permissions Policy Header is an added layer of security that helps to restrict from unauthorized access or usage of browser/client features by web
resources. This policy ensures the user privacy by limiting or specifying the features of the browsers can be used by the web resources. Permissions
Policy provides a set of standard HTTP headers that allow website owners to limit which features of browsers can be used by the page such as camera,
microphone, location, full screen etc.

PeweHune

Ensure that your web server, application server, load balancer, etc. is configured to set the Permissions-Policy header.

PekomeHgauuu

CM. peLLeHne 1 CChINKu:

https://developer.mozilla.org/en-US/docs/Web/HT TP/Headers/Permissions-Policy
https://developer.chrome.com/blog/feature-policy/
https://scotthelme.co.uk/a-new-security-header-feature-policy/
https://w3c.github.io/webappsec-feature-policy/

https://www.smashingmagazine.com/2018/12/feature-policy/

Crpanuua u3
[Jara coznanus: 26.04.2025



Security Scanner
Ot4er 0 6€30MaCHOCTH
7. Server Leaks Information via "X-Powered-By" HTTP Response Header Field(s)

YpoBeHb cepbe3HocTu: CpeaHuii
Crartyc: O6HapyxeHa
OnucaHue

The web/application server is leaking information via one or more "X-Powered-By" HTTP response headers. Access to such information may facilitate
attackers identifying other frameworks/components your web application is reliant upon and the vulnerabilities such components may be subject to.

PelweHune

Ensure that your web server, application server, load balancer, etc. is configured to suppress "X-Powered-By" headers.

PekomeHgauum

Cwm. peLieHne 1 CCbISKn:

https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/01-Information_Gathering/08-
Fingerprint_Web_Application_Framework

https://www.troyhunt.com/2012/02/shhh-dont-let-your-response-headers.html

8. Server Leaks Version Information via "Server" HTTP Response Header Field

YpoBeHb cepbe3HocTu: CpeaHuii
Crartyc: O6HapyxeHa
OnucaHue

The web/application server is leaking version information via the "Server" HTTP response header. Access to such information may facilitate attackers
identifying other vulnerabilities your web/application server is subject to.

PeweHune

Ensure that your web server, application server, load balancer, etc. is configured to suppress the "Server" header or provide generic details.

PekomeHgauuu

CM. peLLeHne 1 CChINKu:
https://httpd.apache.org/docs/current/mod/core.html#servertokens
https://learn.microsoft.com/en-us/previous-versions/msp-n-p/ff648552(v=pandp.10)

https://www.troyhunt.com/shhh-dont-let-your-response-headers/

9. X-Content-Type-Options Header Missing

YpoBeHb cepbe3HocTu: CpeaHuii
Cratyc: O6HapyxeHa
OnucaHue

The Anti-MIME-Sniffing header X-Content-Type-Options was not set to 'nosniff'. This allows older versions of Internet Explorer and Chrome to perform
MIME-sniffing on the response body, potentially causing the response body to be interpreted and displayed as a content type other than the declared
content type. Current (early 2014) and legacy versions of Firefox will use the declared content type (if one is set), rather than performing MIME-sniffing.

PeweHune

Ensure that the application/web server sets the Content-Type header appropriately, and that it sets the X-Content-Type-Options header to 'nosniff' for all
web pages.

If possible, ensure that the end user uses a standards-compliant and modern web browser that does not perform MIME-sniffing at all, or that can be
directed by the web application/web server to not perform MIME-sniffing.

PekomeHgauuu

CM. peLLeHmne v CChINKu:
https://learn.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/compatibility/gg622941(v=vs.85)

https://owasp.org/www-community/Security_Headers

Crpanuna u3
[Jara coznanus: 26.04.2025



Security Scanner
Ot4er 0 6€30MaCHOCTH
10. In Page Banner Information Leak

YpoBeHb cepbe3HocTu: CpeaHuii
Crartyc: O6HapyxeHa
OnucaHue

The server returned a version banner string in the response content. Such information leaks may allow attackers to further target specific issues
impacting the product and version in use.

PeweHune
Configure the server to prevent such information leaks. For example:
Under Tomcat this is done via the "server" directive and implementation of custom error pages.

Under Apache this is done via the "ServerSignature" and "ServerTokens" directives.

PekomeHagauuu

Cm. peLieHne 1 CCbIfKn:

https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/08-Testing_for_Error_Handling/

11. Charset Mismatch (Header Versus Meta Content-Type Charset)

YpoBeHb cepbe3HocTu: CpeaHuii
Crartyc: O6HapyxeHa
OnucaHue

This check identifies responses where the HTTP Content-Type header declares a charset different from the charset defined by the body of the HTML or
XML. When there's a charset mismatch between the HTTP header and content body Web browsers can be forced into an undesirable content-sniffing
mode to determine the content's correct character set.

An attacker could manipulate content on the page to be interpreted in an encoding of their choice. For example, if an attacker can control content at the
beginning of the page, they could inject script using UTF-7 encoded text and manipulate some browsers into interpreting that text.

PeweHune
Force UTF-8 for all text content in both the HTTP header and meta tags in HTML or encoding declarations in XML.

PekomeHgauuu

Cwm. peLieHne 1 CCbIfkn:

https://code.google.com/p/browsersec/wiki/Part2#Character_set_handling_and_detection

12. Modern Web Application

YpoBeHb cepbe3HocTu: CpeaHuii
Crartyc: O6HapyxeHa
OnucaHue

The application appears to be a modern web application. If you need to explore it automatically then the Ajax Spider may well be more effective than the
standard one.

PeweHune

This is an informational alert and so no changes are required.

PekomeHgauuu

Cwm. pelieHne 1 CCbIfkn:

13. Non-Storable Content

YpoBeHb cepbe3HocTu: CpeaHui
Crartyc: ObHapyxeHa

OnucaHue

Crpanuna u3
[Jara coznanus: 26.04.2025



Security Scanner
Ortuer 0 6€30I1aCHOCTH

The response contents are not storable by caching components such as proxy servers. If the response does not contain sensitive, personal or user-
specific information, it may benefit from being stored and cached, to improve performance.

PeweHune

The content may be marked as storable by ensuring that the following conditions are satisfied:

The request method must be understood by the cache and defined as being cacheable ("GET", "HEAD", and "POST" are currently defined as cacheable)
The response status code must be understood by the cache (one of the 1XX, 2XX, 3XX, 4XX, or 5XX response classes are generally understood)

The "no-store" cache directive must not appear in the request or response header fields

For caching by "shared" caches such as "proxy" caches, the "private" response directive must not appear in the response

For caching by "shared" caches such as "proxy" caches, the "Authorization" header field must not appear in the request, unless the response explicitly
allows it (using one of the "must-revalidate", "public”, or "s-maxage" Cache-Control response directives)

In addition to the conditions above, at least one of the following conditions must also be satisfied by the response:
It must contain an "Expires" header field

It must contain a "max-age" response directive

For "shared" caches such as "proxy" caches, it must contain a "s-maxage" response directive

It must contain a "Cache Control Extension" that allows it to be cached

It must have a status code that is defined as cacheable by default (200, 203, 204, 206, 300, 301, 404, 405, 410, 414, 501).

PekomeHgauum

CM. peLLeHne 1 CCbInKu:
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7231

https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

14. Storable and Cacheable Content

YpoBeHb cepbe3HOCTU: Hunskun

Crartyc: ObHapyxeHa
Onucaxune

The response contents are storable by caching components such as proxy servers, and may be retrieved directly from the cache, rather than from the
origin server by the caching servers, in response to similar requests from other users. If the response data is sensitive, personal or user-specific, this
may result in sensitive information being leaked. In some cases, this may even result in a user gaining complete control of the session of another user,
depending on the configuration of the caching components in use in their environment. This is primarily an issue where "shared" caching servers such
as "proxy" caches are configured on the local network. This configuration is typically found in corporate or educational environments, for instance.

PeweHue

Validate that the response does not contain sensitive, personal or user-specific information. If it does, consider the use of the following HTTP response
headers, to limit, or prevent the content being stored and retrieved from the cache by another user:

Cache-Control: no-cache, no-store, must-revalidate, private
Pragma: no-cache
Expires: 0

This configuration directs both HTTP 1.0 and HTTP 1.1 compliant caching servers to not store the response, and to not retrieve the response (without
validation) from the cache, in response to a similar request.

PekomeHgauuu

CM. peLLeHne v CChINKu:
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7231

https://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

15. User Controllable HTML Element Attribute (Potential XSS)
Crpanuua u3
[Jara coznanus: 26.04.2025



Security Scanner
OrtyeT 0 0€30MacCHOCTH

YpoBeHb cepbe3HocTU: Kputnueckui
Crartyc: ObHapyxeHa
Onucaxune

This check looks at user-supplied input in query string parameters and POST data to identify where certain HTML attribute values might be controlled.
This provides hot-spot detection for XSS (cross-site scripting) that will require further review by a security analyst to determine exploitability.

PeweHune
Validate all input and sanitize output it before writing to any HTML attributes.

PekomeHaauum

CM. peLueHmne 1 CCbISKU:

https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html

16. Authentication Request Identified

YpoBeHb cepbe3HocTu: CpeaHuin
Crartyc: OGHapyxeHa
OnucaHue

The given request has been identified as an authentication request. The 'Other Info' field contains a set of key=value lines which identify any relevant
fields. If the request is in a context which has an Authentication Method set to "Auto-Detect" then this rule will change the authentication to match the
request identified.

PeweHune
This is an informational alert rather than a vulnerability and so there is nothing to fix.

PekomeHpaauum

Cm. peLlieHne 1 CCbInKn:

https://www.zaproxy.org/docs/desktop/addons/authentication-helper/auth-reqg-id/

Crpanuna u3
Jata coznmanus: 26.04.2025



	Отчет по результатам сканирования безопасности
	Сводка результатов
	Подробные результаты
	1. SQL Injection in searchFor
	Описание
	Решение
	Рекомендации

	2. Content Security Policy (CSP) Header Not Set
	Описание
	Решение
	Рекомендации

	3. Missing Anti-clickjacking Header
	Описание
	Решение
	Рекомендации

	4. Absence of Anti-CSRF Tokens
	Описание
	Решение
	Рекомендации

	5. Insufficient Site Isolation Against Spectre Vulnerability
	Описание
	Решение
	Рекомендации

	6. Permissions Policy Header Not Set
	Описание
	Решение
	Рекомендации

	7. Server Leaks Information via "X-Powered-By" HTTP Response Header Field(s)
	Описание
	Решение
	Рекомендации

	8. Server Leaks Version Information via "Server" HTTP Response Header Field
	Описание
	Решение
	Рекомендации

	9. X-Content-Type-Options Header Missing
	Описание
	Решение
	Рекомендации

	10. In Page Banner Information Leak
	Описание
	Решение
	Рекомендации

	11. Charset Mismatch (Header Versus Meta Content-Type Charset)
	Описание
	Решение
	Рекомендации

	12. Modern Web Application
	Описание
	Решение
	Рекомендации

	13. Non-Storable Content
	Описание
	Решение
	Рекомендации

	14. Storable and Cacheable Content
	Описание
	Решение
	Рекомендации

	15. User Controllable HTML Element Attribute (Potential XSS)
	Описание
	Решение
	Рекомендации

	16. Authentication Request Identified
	Описание
	Решение
	Рекомендации




